Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Monodisperse suspensions of Brownian colloidal spheres crystallize at high densities, and ordering under shear has been observed at densities below the crystallization threshold. We perform large-scale simulations of a model suspension containing over [Formula: see text] particles to quantitatively study the ordering under shear and to investigate its link to the rheological properties of the suspension. We find that at high rates, for [Formula: see text], the shear flow induces an ordering transition that significantly decreases the measured viscosity. This ordering is analyzed in terms of the development of layering and planar order, and we determine that particles are packed into hexagonal crystal layers (with numerous defects) that slide past each other. By computing local [Formula: see text] and [Formula: see text] order parameters, we determine that the defects correspond to chains of particles in a squarelike lattice. We compute the individual particle contributions to the stress tensor and discover that the largest contributors to the shear stress are primarily located in these lower density, defect regions. The defect structure enables the formation of compressed chains of particles to resist the shear, but these chains are transient and short-lived. The inclusion of a contact friction force allows the stress-bearing structures to grow into a system-spanning network, thereby disrupting the order and drastically increasing the suspension viscosity.more » « less
-
To better understand the decline of one of earth’s most biodiverse habitats, coral reefs, many survey programs employ regular photographs of the benthos. An emerging challenge is the time required to annotate the large volume of digital imagery generated by these surveys. Here, we leverage existing machine-learning tools (CoralNet) and develop new fit-to-purpose programs to process and score benthic photoquadrats using five years of data from the Smithsonian MarineGEO Network’s biodiversity monitoring program at Carrie Bow Cay, Belize. Our analysis shows that scleractinian coral cover on forereef sites (at depths of 3–10 m) along our surveyed transects increased significantly from 6 to 13% during this period. More modest changes in macroalgae, turf algae, and sponge cover were also observed. Community-wide analysis confirmed a significant shift in benthic structure, and follow-up in situ surveys of coral demographics in 2019 revealed that the emerging coral communities are dominated by fast-recruiting and growing coral species belonging to the genera Agaricia and Porites. While the positive trajectory reported here is promising, Belizean reefs face persistent challenges related to overfishing and climate change. Open-source computational toolkits offer promise for increasing the efficiency of reef monitoring, and therefore our ability to assess the future of coral reefs in the face of rapid environmental change.more » « less
An official website of the United States government
